• SLEK

細胞的理財之道——從2019諾貝爾生理醫學獎看氧氣偵測與適應

更新日期:2月 11

責任編輯/胡芳瑜

核稿編輯/王子維

審閱/吳明順醫師(臺北醫學大學.市立萬芳醫院 消化內科主任)




  今年諾貝爾生理醫學獎頒給三位醫生──Gregg Semenza、William Kaelin和Sir Peter Ratcliffe,表彰他們發現細胞如何偵測和適應氧氣濃度的改變。事實上,早在1938年,諾貝爾生理醫學獎就曾頒給人體偵測血氧濃度的機制 [1]。氧氣究竟是何方神聖,值得再拿一回諾貝爾獎?是誰在體內幫我們做化學定量實驗,測量氧氣濃度?發現氧氣偵測機制,又將為人類帶來什麼改變?

  讓我用「錢」,說給你聽!

錢不是萬能,但沒錢萬萬不能——氧氣

  錢,是現代人生活的必需。不論是仰賴零用錢生存的窮學生或是22K月光族,錢總是不夠用,總得省吃儉用維持左支右絀的生活開銷;但偶爾,例如在領零用錢或薪水的隔天,還是可以好好吃上一頓,享受一天──就只有一天──的有錢人生。覺得厭世嗎?其實你不孤單,全身上下37.2兆顆細胞都和你同病相憐,只不過苦惱著它們的不是阿堵物,而是氧氣。

  細胞需要氧氣來將從食物取得的營養轉換為能量。還記得細胞的發電廠──粒線體嗎?當葡萄糖、脂肪酸和胺基酸等營養素進入細胞,必須先到粒線體經由呼吸作用轉化為ATP(adenosine triphosphate,腺苷三磷酸),才能供給細胞作為能量來源。呼吸作用包括糖解作用、轉乙醯輔酶A、檸檬酸循環、電子傳遞鏈等階段,而當電子傳遞鏈上的電子來到終點,須由氧氣接收並還原成水。如果沒有氧氣這個最終受體,電子傳遞鏈就無法進行,也就無法將NADH、FADH2等轉換為ATP。當然,就如你在生物課本上學到的,細胞有時會經由發酵作用產生ATP,例如酵母菌的酒精發酵和骨骼肌細胞中的乳酸發酵。由於發酵作用只經由糖解作用產生能量,而不會經過電子傳遞鏈,所以並不需要氧氣參與。然而,發酵作用每次只產生兩個ATP,相較於有氧呼吸每次產生30~32個ATP,還是難以完全取代。

  細胞需要的氧氣從哪來呢?就如你此刻正在做的(不要故意憋氣!),透過呼吸運動,我們將氧氣從口鼻吸入肺裡。地球大氣中約有21%是氧氣,看似唾手可得,生物體內卻還是經常會面臨缺氧(hypoxia)的情況。就如同窮學生和上班族需要學習小資理財,缺乏氧氣的細胞們,也必須擁有快速因應氧氣濃度變化自我調適的能力。

人體的小資理財——氧氣濃度變化的偵測與對策

  小資理財的第一步,是認清自己的財力。人體也是一樣,在決定使用多少氧氣之前,必須先偵測體內的氧氣濃度高低。講到這裡,你肯定已經聯想到包辦呼吸心跳、咳嗽噴嚏、吞嚥嘔吐的生命中樞──延腦(medulla)。延腦的呼吸中樞藉由偵測腦脊髓液和血液中的H+濃度(即pH值的改變),得知血液中的CO2濃度。如果CO2濃度偏高,也就是H+濃度過高,將會刺激化學受器,再將訊號傳遞至呼吸中樞。接到消息的呼吸中樞會馬上發布命令,要求呼吸深度增加、頻率上升,加快CO2的排除以及O2的供應。以上這個路徑雖然是偵測CO2,卻也和氧氣濃度息息相關,因為體內CO2的主要來源正是消耗氧氣的呼吸作用。



  讓我們離開中樞神經,摸摸脖子兩側。你絕不會想到頸動脈壁上的頸動脈體(carotid body)居然也扮演著調節呼吸的重要角色,而且它不僅能偵測周邊血液的CO2濃度,更能直接偵測O2濃度。當O2濃度下降,會刺激頸動脈體這個化學受器,進而產生動作電位,經由第九對腦神經──舌咽神經──傳到延腦呼吸中樞,促使呼吸加深、加快。1938年的諾貝爾生理醫學獎,就是由發現頸動脈體偵測氧氣濃度機制的Corneille Heymans獨得 [1]。同樣地,在心臟附近的主動脈壁上,也有主動脈體(aortic body)負責偵測O2、CO2濃度,並經由第十對腦神經──迷走神經──傳遞訊號給呼吸中樞。

  讓我們來舉個常見的例子:你有沒有爬過山呢?又是否曾聽過、見過、甚至親身經歷過高山症?我們所在的海拔高度愈高,大氣壓力愈小,氧氣分壓也跟著降低,這時就可能因為血氧過低而引發頭昏、嘔吐、睡眠不佳等高山症症狀 [3]。事實上,我們的身體並沒有如此不堪一擊,如果能給予身體充足時間適應低氧環境,便能避免許多症狀發生。最明顯的例子就是:聖母峰的挑戰者絕不會一路衝刺手刀攻頂,而是訂好高度適應計畫,在特定幾個海拔高度停留幾天,讓身體充分適應新的氧氣濃度。你一定會好奇:在適應的過程中,體內究竟發生了什麼事呢?

  人體對氧氣的適應方式,就如同小資族的理財策略,分為短期和長期。荷包在短時間內縮水時,小資族們會即時減少消費並盡快領錢;但若長時間缺錢,就必須調整消費習慣,再多兼一份工作增加收入。同理,短期內血中氧氣濃度減少時,會刺激前面提到的化學受器,傳遞訊息到呼吸中樞,促使呼吸加快、加深;如果氧氣濃度長期偏低(例如登山客在高海拔停留數天到數個星期),不斷刺激腎臟裡特化的細胞,便會釋放更多紅血球生成素(Erythropoietin,簡稱EPO),促進骨髓內的紅血球生成(erythropoiesis),而使血液中紅血球濃度上升,幫助我們在低氧環境中仍然能夠運輸足量的氧氣 [2,4]。

  以上提到的都還是「人體」如何適應,但事實上,縱使所處環境的氧氣濃度正常,人體組織間的氧氣濃度仍可能有高低起伏。舉例來說,當你在跑800或1600公尺時,腿部骨骼肌會大量耗氧,使組織間可用的氧氣量下降。另外,在癌細胞大量生長或是感染之處,也可能發生局部氧氣濃度下降。這時候細胞們該怎麼辦呢?細胞不像人體有神經系統偵測濃度、有呼吸系統獲取氧氣、有循環系統運輸氧氣,而是用更細密精微的方式──在基因轉錄過程動點手腳,改變基因表現,並因而影響細胞的代謝與運作。不過,細胞到底是如何偵測氧氣濃度變化,又如何動這些手腳呢?

  這~就輪到2019諾貝爾生理醫學獎登場啦!

老婆勤儉持家的奧秘——諾貝爾獎揭開分子機制 [2,5]

  在1986和1987年,一群科學家發現「缺氧」會讓腎臟內和EPO相關的基因轉錄表現增強 [7,8,9]。下一步,就是尋找到底是EPO基因調控區中的什麼DNA序列負責偵測氧氣。Gregg Semenza、William Kaelin和Sir Peter Ratcliffe三位2019諾貝爾生理醫學獎得主的研究,便都圍繞在「低氧誘導因子」(hypoxia inducible factor,簡稱HIF)如何影響轉錄調控。

  1990年代初期,Semenza和Ratcliffe發現EPO基因上的一段DNA序列,能在低氧誘導下發揮「增強子」(enhancer)的作用 [6],也就是在和蛋白質結合後增強轉錄作用。Semenza將此增強子命名為「低氧反應元件」(hypoxia response element,簡稱HRE),並證明只有在低氧狀態下,核蛋白「低氧誘導因子I」(簡稱HIF-1)才能和HRE結合,進而活化鄰近的基因。到了1995年,Semenza和他的博士後研究員王光發現HIF-1其實是由HIF-1α和ARNT這兩種蛋白組合而成 [10,11]。重點是,如果讓細胞從低氧狀態轉到高氧狀態,HIF-1α就會消失,這意味著HIF-1α很可能就是偵測氧氣的關鍵 [12]!

  此外,Semenza和Ratcliffe也發現HIF-1並不僅僅作用在腎臟中產生EPO的細胞;反之,在許多哺乳類細胞中,低氧都能引發HIF-1和DNA結合,進而活化目標基因 [13,14]。這似乎暗示著細胞中存在一套統一的分子機制,能夠針對組織間的氧氣濃度變化做出調適。譬如在1996年,Semenza證實HIF-1能活化血管內皮生長因子(vascular endothelial growth factor,簡稱VEGF)基因 [15],促進製造新血管,提升氧氣運輸量,顯示HIF-1在氧氣濃度適應上確實扮演重要角色。然而,到底是什麼機制讓HIF-1在氧氣豐富的狀態下減少呢?答案竟來自意想不到的方向。

  遲遲未登場的William Kaelin其實是一位癌症研究者。在Semenza和Ratcliffe研究EPO基因調控的同時,他正探討著逢希伯-林道症候群(von Hippel–Lindau’s disease,簡稱VHL),並發現VHL蛋白有缺陷的癌細胞會不正常地大量表現和低氧有關的基因,且當再次導入正常VHL基因,低氧相關基因的表現也會恢復正常 [16]。這顯示VHL和低氧反應的控制很有關係。又有其他研究顯示,有一種複合體會在蛋白質上標記泛素(ubiquitin)蛋白,讓他們能被蛋白酶體(proteasome)降解,而VHL就是此複合體的組成之一 [17,18]。後來,Ratcliffe研究證實VHL確實扮演在正常氧氣濃度時讓HIF-1α降解的關鍵角色 [19]。

  最後懸而未決的就是:O2濃度如何調控VHL和HIF-1α間的反應?西元2001年,Kaelin和Ratcliffe同時發表了這個問題的解答:在正常氧氣濃度下,HIF-1α會在酵素作用下被加上兩個羥基,使VHL能夠辨認並和HIF-1α結合,進而被降解 [20,21]。後續研究更找出負責這個過程的酵素種類 [22,23],並證實HIF-1α的基因啟動功能也受到羥基化調控,且此羥基化機制亦和氧氣有關 [24,25,26]。至此,三位諾貝爾獎得主終於讓氧氣偵測機制真相大白。

  讀到這裡是不是不禁發現——不愧是諾貝爾獎,居然經歷這麼曲曲折折的過程!現在就教你一個小秘訣,配合下圖,讓你在三分鐘內弄清楚整個作用過程!

  如果說O2是細胞的錢錢,HIF-1α就像是老婆。當你有足夠的錢(O2),能分給老婆一些帶在身上(HIF-1α羥基化),她就能去買名牌包(VHL)。你也知道的,名牌包會讓老婆心情大好,嘮嘮叨叨的脾氣於是成功「降解」,便不會來管你怎麼花錢了。反之,如果你口袋空空(缺氧),老婆拿不到錢,當然也買不到名牌包,怒氣逐漸累積,就會結合宿怨(ARNT)發動強化子(HRE),一起強化「勤儉持家基因」(缺氧適應相關基因)……嘿嘿,這下子你的日子可就不好過了喔!



無價之寶——氧氣偵測分子機制還帶給我們什麼?

  Gregg Semenza、William Kaelin和Sir Peter Ratcliffe的努力之所以能獲得諾貝爾獎的殊榮,不僅在於弄清楚分子機制,更在於其深遠的影響和發展性,其中以疾病治療最受矚目。譬如威脅著人類健康與生活品質的癌症,在腫瘤生長過程中,癌細胞會善用這套氧氣調控機制來刺激血管增生,並重塑代謝模式來讓癌細胞快速增長。又如長期腎臟功能受損的病人常會有貧血問題,就和腎臟細胞的EPO分泌量減少息息相關。更甚者,胚胎發育中血管的生成以及胎盤發育也都和氧氣偵測機制拖不了干係。如果我們能發明一種藥,用於啟動或阻擋氧氣偵測機制,是否就能成為治療疾病的新曙光?

  細胞、組織及個體對氧氣濃度變化的調適堪稱動物最重要、最核心的生理適應,意味著諾貝爾獎獲獎只是個開始,後續的發展更是精彩可期!



Take-home messages:

  1. 氧氣作為呼吸作用電子傳遞鏈的最終受體,是粒線體產生ATP的不可或缺的角色(就和人需要錢一樣)。

  2. 「人體」透過延腦呼吸中樞、頸動脈體、主動脈體、腎臟釋放紅血球生成素等,偵測血氧濃度並加以調適(小資理財總有百百種方式!)。

  3. 2019諾貝爾生理醫學獎揭開「細胞」偵測和調適組織間氧氣濃度變化的分子機制(善用「勤儉持家的老婆」融會貫通~),未來可望應用於癌症、貧血等疾病的治療。


看完文章,給我們一點回饋吧!讓我們可以做得更好!



參考資料:

[1] https://www.nobelprize.org/prizes/medicine/1938/summary/

[2] Press release: The Nobel Prize in Physiology or Medicine 2019

https://www.nobelprize.org/prizes/medicine/2019/press-release/

[3] https://www.shh.org.tw/page/PharmDetail.aspx?seq_no=P1003

[4] https://courses.lumenlearning.com/boundless-ap/chapter/respiratory-adjustments/

[5] Scientific Background - How cells sense and adapt to oxygen availability

[6] Semenza, G.L., Nejfelt, M.K., Chi, S.M., and Antonarakis, S.E. (1991b). Hypoxia-inducible nuclear factors bind to an enhancer element located 3' to the human erythropoietin gene. Proc Natl Acad Sci U S A 88, 5680-5684.

[7] Bondurant, M.C., and Koury, M.J. (1986). Anemia induces accumulation of erythropoietin mRNA in the kidney and liver. Mol Cell Biol 6, 2731-2733.

[8] Jelkmann, W., and Hellwig-Burgel, T. (2001). Biology of erythropoietin. Adv Exp Med Biol 502, 169-187.

[9] Schuster, S.J., Wilson, J.H., Erslev, A.J., and Caro, J. (1987). Physiologic regulation and tissue localization of renal erythropoietin messenger RNA. Blood 70, 316-318.

[10] Wang, G.L., Jiang, B.H., Rue, E.A., and Semenza, G.L. (1995). Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proceedings of the National Academy of Sciences of the United States of America 92, 5510-5514.

[11] Wang, G.L., and Semenza, G.L. (1995). Purification and characterization of hypoxia-inducible factor 1. Journal of Biological Chemistry 270, 1230-1237.

[12] Semenza, G.L., and Wang, G.L. (1992). A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol Cell Biol 12, 5447-5454.

[13] Maxwell, P.H., Pugh, C.W., and Ratcliffe, P.J. (1993). Inducible operation of the erythropoietin 3' enhancer in multiple cell lines: evidence for a widespread oxygen-sensing mechanism. Proc Natl Acad Sci U S A 90, 2423-2427.

[14] Wang, G.L., and Semenza, G.L. (1993). General involvement of hypoxia-inducible factor 1 in transcriptional response to hypoxia. Proc Natl Acad Sci U S A 90, 4304-4308.

[15] Forsythe, J. A., Jiang, B. H., Iyer, N. V., Agani, F., Leung, S. W., Koos, R. D., & Semenza, G. L. (1996). Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Molecular and cellular biology, 16(9), 4604-4613.

[16] Iliopoulos, O., Kibel, A., Gray, S., and Kaelin, W.G., Jr. (1995). Tumour suppression by the human von Hippel-Lindau gene product. Nat Med 1, 822-826.

[17] Pause, A., Lee, S., Worrell, R.A., Chen, D.Y., Burgess, W.H., Linehan, W.M., and Klausner, R.D. (1997). The von Hippel-Lindau tumor-suppressor gene product forms a stable complex with human CUL-2, a member of the Cdc53 family of proteins. Proc Natl Acad Sci U S A 94, 2156-2161.

[18] Lonergan, K.M., Iliopoulos, O., Ohh, M., Kamura, T., Conaway, R.C., Conaway, J.W., and Kaelin, W.G., Jr. (1998). Regulation of hypoxia-inducible mRNAs by the von Hippel-Lindau tumor suppressor protein requires binding to complexes containing elongins B/C and Cul2. Mol Cell Biol 18, 732-741.

[19] Maxwell, P.H., Wiesener, M.S., Chang, G.W., Clifford, S.C., Vaux, E.C., Cockman, M.E., Wykoff, C.C., Pugh, C.W., Maher, E.R., and Ratcliffe, P.J. (1999). The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399, 271-275.

[20] Ivan, M., Kondo, K., Yang, H., Kim, W., Valiando, J., Ohh, M., Salic, A., Asara, J.M., Lane, W.S., and Kaelin, W.G., Jr. (2001). HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292, 464-468.

[21] Jaakkola, P., Mole, D.R., Tian, Y.M., Wilson, M.I., Gielbert, J., Gaskell, S.J., Kriegsheim, A., Hebestreit, H.F., Mukherji, M., Schofield, C.J., et al. (2001). Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292, 468-472.

[22] Bruick, R.K., and McKnight, S.L. (2001). A conserved family of prolyl-4-hydroxylases that modify HIF. Science 294, 1337-1340.

[23] Epstein, A.C., Gleadle, J.M., McNeill, L.A., Hewitson, K.S., O'Rourke, J., Mole, D.R., Mukherji, M., Metzen, E., Wilson, M.I., Dhanda, A., et al. (2001). C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 107, 43-54.

[24] Mahon, P.C., Hirota, K., and Semenza, G.L. (2001). FIH-1: a novel protein that interacts with HIF-1alpha and VHL to mediate repression of HIF-1 transcriptional activity. Genes Dev 15, 2675-2686.

[25] Lando, D., Peet, D.J., Gorman, J.J., Whelan, D.A., Whitelaw, M.L., and Bruick, R.K. (2002a). FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor. Genes Dev 16, 1466-1471.

[26] Lando, D., Peet, D.J., Whelan, D.A., Gorman, J.J., and Whitelaw, M.L. (2002b). Asparagine hydroxylation of the HIF transactivation domain a hypoxic switch. Science 295, 858-861.

[27] 影片供參考:https://www.youtube.com/watch?v=azIEzLXXyHM

圖片來源:

圖一:https://www.nobelprize.org/prizes/medicine/

圖二:http://emptynosesyndrome.net/respiratory-system/control-of-respiration

圖三&圖四: Scientific Background - How cells sense and adapt to oxygen availability

  • Facebook - White Circle
  • Instagram - White Circle